TU

Grazm

WOLVERINE 2023

PASSION
TECHNOLOGY

Trusted Reinforcement Learning

Bettina Konighofer
bettina.koenighofer@iaik.tugraz.at

Paris 17 July 2023

TU

Grazm

We need trustworthy Al!

N Y.

b
Safety & * b
Shielding C t 3 i
[orrectness] [Explainability] { : ﬂ} ;Qr:alytz.lng |
@é ntentiona
_ Behavior

[Robustness [Accountability]

Robust Testing & [Fairness]

Policy Repair
_‘ % Fairness / Performance
L Shielding

We need trustworthy Al

o Ty,

Outline

= Shielding for Safety @
= Shielding for Fairness / Performance

= Analyzing Evidence of Intentional Behavior

" Testing and Policy Repair

= Model Learning {

TU

Grazm

Safety Shielding - Joint work with

Stefan Pranger Filip Cano Cordoba Roderick Bloem Robert Konighofer

Radboud
. University
Nijmegen

I U Clausthal

austhal University of Technology

VIRGINIA TECH

=y How to guarantee Safety?

[Environment] >L System] < T—p

T action

Verification inconclusive
System too complicated
... but we need to have absolute certainty

R. Bloem, B. Kdnighofer, R. Kénighofer, C. Wang:
Shield Synthesis - Runtime Enforcement for Reactive Systems. TACAS 2015

Model of environment

Formal Safety Specification

4
I

TU

Grazm

=y How to guarantee Safety?

input
[Environment } i { System]
A _
action
safe
action

R. Bloem, B. Kdnighofer, R. Kénighofer, C. Wang:
Shield Synthesis - Runtime Enforcement for Reactive Systems. TACAS 2015

Model of environment

Formal Safety Specification

4
I

TU

Grazm

- [. Ty
= Shielding - Properties

1. Shields guarantee correctness
2. Shields are minimal interfering

input
[Environment } P { System]

N
safe w

action |

R. Bloem, B. Kdnighofer, R. Kénighofer, C. Wang:
Shield Synthesis - Runtime Enforcement for Reactive Systems. TACAS 2015

TU

Grazm

= Shielding - Properties

1. Shields guarantee correctness
Correct-by-construction

Predictive
N
. N
input
[Environment } P { System] i
N
action
safe w
action |

R. Bloem, B. Kdnighofer, R. Kénighofer, C. Wang:
Shield Synthesis - Runtime Enforcement for Reactive Systems. TACAS 2015

TU

Grazm

= Shielding - Properties

1. Shields guarantee correctness

Correct-by-construction
Predictive

input
[Environment } P { System]

N
safe w

action |

R. Bloem, B. Kdnighofer, R. Kénighofer, C. Wang:
Shield Synthesis - Runtime Enforcement for Reactive Systems. TACAS 2015

= Shielding - Properties

[Environment

TU

Grazm

1. Shields guarantee correctness
= Correct-by-construction
= Predictive

2. Shields are minimal interfering

[Deviation allowed]

N

safe
action

R. Bloem, B. Kdnighofer, R. Kénighofer, C. Wang:
Shield Synthesis - Runtime Enforcement for Reactive Systems. TACAS 2015

2 Shield Construction — Synthesis is a Game

i1
01
e e 01
iy 0

So

R. Bloem, B. Kdnighofer, R. Kénighofer, C. Wang:
Shield Synthesis - Runtime Enforcement for Reactive Systems. TACAS 2015

Formal safety specification

I 4

Model of environment

—

TU

Grazm

E Y.

v Shield Construction — Synthesis is a Game

inputs

51
Player - Player ‘
01 .
ﬂm 01 Environment
i 01
; 0, _ i outputs
1 I 1

\ 0;
Environment

System

R. Bloem, B. Kénighofer, R. Kénighofer, C. Wang:
Shield Synthesis - Runtime Enforcement for Reactive Systems. TACAS 2015

7

.

System Player wins,
if @ is never visited

J

% Shield Construction — Synthesis is a Game

inputs

TU

Grazm

Player - Player ‘
Environment System

outputs

7

.

Winning Region: States from which the system
can enforce that @ is never visited

\

s Ty
% Shield Construction — Synthesis is a Game

inputs

rr Player [Player ‘
Environment System
= ©
outputs
Sg
O, E
S2
(N/)
System Player wins, Winning Region: States from which the system
if @ is never visited can enforce that @ is never visited
_ J \L J

.

System Player wins,
if @ is never visited

J

% Shield Construction — Synthesis is a Game

inputs

outputs

TU

Grazm

Player - Player ‘
Environment System

7

.

Winning Region: States from which the system
can enforce that @ is never visited

\

% Shield Construction — Synthesis is a Game

inputs

outputs

.

System Player wins,
if @ is never visited

J

TU

Grazm

Player - Player .
Environment System

.

Winning Region: States from which the system
can enforce that @ is never visited

\

i @

0
7

)

\O
07
4)
System Player wins,
if ‘ is never visited
L W,

v Shield Construction — Synthesis is a Game

inputs

TU

Grazm

Player - Player ‘
Environment System

outputs

S3

N

Winning Region: States from which the system
can enforce that @ is never visited

.

\

E Ty
% Shield Construction — Synthesis is a Game

inputs

Player - Player ‘
Environment System
s Q Ut
S5 10

Winning Region

)

O

E3 Y.

Different Types of Models

2 Player Game — adversarial environment MDP — probabilistic environment
1 01
O—— :

2 2 Player Game — probabilistic & adversarial environment Q%’ I

il o > C\'I
O = -

1—p,

N. Jansen, B. Kénighofer, S. Junges, A. Serban, R. Bloem:
Safe Reinforcement Learning Using Probabilistic Shields. CONCUR 2020

TU

Grazm

Safety Shields for Probabilistic Environments

= Example: Stay safe in the next k steps

= For all state-actions pairs: Compute Safety-Value:
* Prax(S,a) = Poay(T(s,a), GZ* " safe)

4)
= Absolute threshold y E [O.,l] | Shielding parameters:
" If Ppax(s,a) <y > aisshieldedins = Large y or A — strict shield
= Not deadlock free! = Small ¥ or A = permissive shield
= y and A can be changed on the fly
= Relative threshold 1 € [0,1] - /

" f P g(s,a) < A- Pmax(s, aopt) > ais shielded in s

N. Jansen, B. Kénighofer, S. Junges, A. Serban, R. Bloem:
Safe Reinforcement Learning Using Probabilistic Shields. CONCUR 2020

B Video: Safety Shielding under Uncertainty WMty

T 1 1T-T

| Ll
I
e
-II-

B. Konighofer, J. Rudolf, A. Palmisano, M. Tappler, R. Bloem:
Online Shielding for Stochastic Systems. NFM 2021

Tempest - Shielding against the Storm

TU

Grazm

= Synthesis tool for shields in probabilistic environments

= Extends model checker STORM

= TEMPEST is a stochastic game solver
= Uses input language from Prism Games

= Difference to Prism Games

= Solves Mean-Payoff Games without
restrictions on the game graph

" Provides most permissive strategies https;//tempest-syntheSiS.OrE,/

S. Pranger, B. Konighofer, L. Posch, R. Bloem:
TEMPEST - Synthesis Tool for Reactive Systems and Shields in Probabilistic Environments. ATVA 2021

https://tempest-synthesis.org/

TU

Grazm

Pre and Post Safety Shielding

:

safe
actions

. reward

[Environment ;[Learning Agent

J/

observation

A

action . observation

[Environment jLearning Agent |
> J reward \

N
safe action

safe action

In Tempest: In Tempest:

(PostSafety,y = 0.9)shields)Py,q=2[G=1*! crash] (PreSafety, A = 0.9)(shields)P,,4,=2[G=1*! crash]

S. Pranger, B. Konighofer, L. Posch, R. Bloem:
TEMPEST - Synthesis Tool for Reactive Systems and Shields in Probabilistic Environments. ATVA 2021

Future Work: Explainable Shields

" Qutput from Tempest !ﬁﬁ

WORK IN PROGRESS

Post-Safety-Shield with relative comparison (lambda = 0.95):
state_id [label]: ’'forwarded actions’ [<action_id> label: <forwarded_act:

® [move=0 & x1=0 & y1=0 & x2=4 & y2=4]: O0{e}:0{e}; 1{s}:1{s}
3 [move=0 & x1=1 & y1=0 & x2=3 & y2=4]: O0Of{e}:2{w}; 2{w}:2{w}
4 [move=0 & x1=1 & y1=0 & x2=4 & y2=4]: 1{s}:3{n}; 3{n}:3{n}

Shields need to be explainable vo vy d actions vy > 0
true ~_ false
= Represent shields as decision trees o0 e e o
2 6 10 {dec, neu,acc} vs >\4 {neu}
= Use tool dtControl [2 6 15 {dec,neu, acc} PN
4 4 15 {dec,neu} {dec,neu, acc} {dec, neu}

Pranav Ashok, Mathias Jackermeier, Jan Kretinsky, Christoph Weinhuber, Maximilian Weininger, Mayank Yadav:
dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning Steered by Experts. TACAS 2021

= Ty,

Outline

= Shielding for Fairness / Performance

= Analyzing Evidence of Intentional Behavior [g: jj

Shielding for Performance/Fairness - &2
Joint work with AL g b,

University of Haifa W Nijmegen

L1

Stefan Pranger Roderick Bloem Martin Tappler Guy Avni Nils Jansen

— a
v

. >

Krishnendu Chatterjee Thomas A. Henzinger

m“ AUSIKIA m '

Institute of
Science and
Technology
Austria

E Y.

Shields for Performance / Fairness

= Learned Controller: optimizes primary performance objective

= Other challenges than safety:
= Optimize secondary objective / difficult to add new features
" Robust performance, also on un-trained behavior
= [ocal fairness

G. Avni, R. Bloem, K. Chatterjee, T. A. Henzinger, B. Konighofer, S. Pranger:
Run-Time Optimization for Learned Controllers Through Quantitative Games. CAV 2019

E Y.

Shields for Performance / Fairness

~ observation -
S Learning Agent J
~/ reward -

[Environment

N

l action

= Two cost functions

" cpgprr: Performance objective of shield} A-cpprr + (1= A) - ¢
= c;nrr: Cost for interference

action’

Mean-Payoff Game, 1 Objective

Mean-Payoff Game, 2 Objectives

G. Avni, R. Bloem, K. Chatterjee, T. A. Henzinger, B. Konighofer, S. Pranger:
Run-Time Optimization for Learned Controllers Through Quantitative Games. CAV 2019

EJ Video: Traffic Control

| flle Edit Settings Locate

Windows Help

b [@] v IR | ower oo
fale Traffic: [131 || =

Qf | |real world :]0‘!

||l File Edit Settings Locate

Windows Help

SHIELDED B

NSHIELDED

(6 (| @) o I | oonir

IscaleTnfﬁ:: 13, ‘ ‘D U

00\‘? | |real world jo‘ﬂ‘

e 1 . > g
e " A ;

<4

S. Pranger, B. Kdnighofer, M. Tappler, M. Deixelberger, N. Jansen, R. Bloem:

Adaptive Shielding under Uncertainty. ACC 2021

»

01:15,08 ={3)

E Y.

Outline

= Analyzing Evidence of Intentional Behavior [igé gj

3 v

Analyzing Intentional Behavior

Ruzica Piskac Scott Shapiro ~ SamuelJudson Timos Antonopoulos Filip Cano Cordoba

- f

l:-) Yale University

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

E Y.

Analyzing Intentional Behavior

Given:
Model of scenario MDP M
Intention States §;
Agent policym:§S —» A

Was the intention of the agent to reach 5, ?
Under perfect knowledge:

If the intention of the agent is to reach Sy,
then T maximizes the probability of reaching S;.

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

TU

Grazm

Analyzing Evidence of Intentional Behavior

= Given:
Model of scenario (MDP M)
Intention (States S))
Agent (policy T: § — A)

Is there evidence of intentional behavior towards reaching S; ?
Compare 1t with most-optimal und least-optimal policy

for achieving ;.

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

TU

Grazm

Analyzing Evidence of Intentional Behavior

DD

IIII /III IIII

Did the agent intentionally cause the harm?
Analyse actions picked from the agent
Compare with most-responsible und unsafest strategy

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

TU

Grazm

Analyzing Evidence of Intentional Behavior

DD

IIII /III IIII

\M

Probability of accident
71 A

nmax

Tmin Time before
accident

> 4

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

TU

Grazm

Analyzing Evidence of Intentional Behavior

DD

IIII /III IIII

Time before
accident

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

Analyze Counterfactuals

“What if it would have been sunny?”

TU

Grazm

oy —

ooao
oog
ooo
ooao

.

>

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:

Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

TU

Analyze Counterfactuals
»What if it there were no trees?m m m
o — i

2 Y

\

> J

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:

Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

Analyzing Intentional Behvior

Tref

Counterfactual
Generation

‘ T= {Tl'TZrTSJTref}

TU

Grazm

Evidence of

——— Intentional Behavior

Evidence of

— Non-intentional Behavior

grl ;g W -

v

»
>

v

T3
4
[Ageregate J I
I—

Results

F. Cano Cdrdoba, S. Judson, T. Antonopoulos, K. Bjgrner, N. Shoemaker, S. J. Shapiro, R. Piskac, B. Konighofer:
Analyzing Intentional Behavior in Autonomous Agents under Uncertainty. IJCAI 2023

Evidence of
Intentional Behavior

Evidence of
Non-intentional Behavior

o Y.

Outline

K3 TU.

Learning and Repair of Deep RL Policies

Martin Tappler Bernhard Aichernig Andrea Pferscher Filip Can Cordoba

M. Tappler, A. Pferscher, B. Aichernig, B. Kénighofer:
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. Under Submission

M. Tappler, F. Cano Cérdoba, B. Aichernig, B. Kénighofer:
Search-Based Testing of Reinforcement Learning. IJCAI 2022

3 v

Learning and Repair of Deep RL Policies

= Classical Software Development
= Write code, testing/debugging, fix code, testing/debugging...

= Classical Development of RL Agents
= Train it, test it, start training from scratch, test it, start training from scratch...

o] Lol
|;I‘|_ [[_ l‘]‘]i **‘* [|’I” 7!" il \7<7I7|*l7|7 [[* | ‘7 I*|7I7l4lgli [?"’rli "
FFFFFFFFFFFFFFFFFFF

M. Tappler, A. Pferscher, B. Aichernig, B. Kénighofer:
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. Under Submission

TU

Grazm

Learning and Repair of Deep RL Policies

= Wouldn’t it be better to also have a cycle? 5-‘:71[[
= Train
= Test
= Repair Policy
= Test
= Repair Policy....

WORK IN PROGRESS

s Y.

Development Cycle using Fuzzing

= Step 1: Train the agent
= Effectively train RL agent via RLfD
= Compute demonstrations automatically

M. Tappler, A. Pferscher, B. Aichernig, B. Konighofer:
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. Under Submission

2 v

Development Cycle using Fuzzing

= Step 1: Train the agent
= Effectively train RL agent via RLfD
= Compute demonstrations automatically

= (a) Search for reference demonstration (DFS)

}'i;*!r‘;"érr;' !'rrrf\rH'H'rH'Hr—lrr‘r':fl"r\"r ';’7>l7:jl>{:'>‘r:"rr 7;*{77**,7:*,7*17‘7*1,7:' Vrlr:"_;j (:"rrr‘ H‘r_rrih'rw i,-‘fr,‘ﬂ = 1' ;'r ;'r
M. Tappler, A. Pferscher, B. Aichernig, B. Kénighofer:
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. Under Submission

v

Development Cycle using Fuzzing

= Step 1: Train the agent
= Effectively train RL agent via RLfD
= Compute demonstrations automatically

= (a) Search for reference demonstration (DFS)
= (b) Fuzz diverse set of demonstrations

= (c) Use demonstrations for RLfD

M. Tappler, A. Pferscher, B. Aichernig, B. Kénighofer:
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. Under Submission

K3 v

Development Cycle using Fuzzing

= Step 1: Train the agent
= Step 2: Test the agent

= Search reveals critical situations
= DFS backtracks when reaching an unsafe state
= Test states along reference demonstration to which the DFS backtracked

A
. e L

. S — : R ¢ ¥ : e S (o
SNCINENE RO R L LA E O H B I I 0 I T 0 T T T I T T I T I S 0 T I T e S I e I e e e W e,

M. Tappler, F. Cano Cérdoba, B. Aichernig, B. Kénighofer:
Search-Based Testing of Reinforcement Learning. IJCAI 2022

K2 v

Development Cycle using Fuzzing

= Step 1: Train the agent
= Step 2: Test the agent

= Step 3: Repair
= Collect examples of correct behavior near detected faulty states
= Apply RLfD with repair experiences

Repair Experiences

M. Tappler, A. Pferscher, B. Aichernig, B. Kénighofer:
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. Under Submission

Outline

TU

Grazm

Learning Environmental Models

Martin Tappler Bernhard Aichernig Edi Muskardin

M. Tappler, E. Muskardin, B. Aichernig, B. Kénighofer:
Learning Environment Models with Continuous Stochastic Dynamics. Under Submission

Learning Environmental Models

= Getting a good model is essential.

RL agent
initial set of trajectories environment iteratively collected trajectories
N AN

T1 = $141S503S9Q; ... S33 Tp = S3A7Sg@A4S20Aq - Sg1

sample trajectories sample trajectories

CE— —

l collect states policy I model
computation refinement

dim. reduction model
& clustering N learning

——> —>

observed states abstract states MDP over abstract states

M. Tappler, E. Muskardin, B. Aichernig, B. Kénighofer:
Learning Environment Models with Continuous Stochastic Dynamics. Under Submission

TU

Grazm

Formal methods are great for learned systems
= [f you have a nice model

If you have a model, we can use it for

= Testing for robust performance and safety

* Monitoring / enforcement
= Explainability /
= Accountability Jhﬂl",lk

TU

Grazm

