

SCIENCE PASSION TECHNOLOGY

Trusted Reinforcement Learning

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Paris 17 July 2023

We need trustworthy Al!

We need trustworthy Al!

Outline

Shielding for Safety

- Shielding for Fairness / Performance
- Analyzing Evidence of Intentional Behavior
- Testing and Policy Repair

Model Learning

Safety Shielding - Joint work with

Stefan Pranger

Ufuk Topcu

Rüdiger Ehlers

A.x. S(0)x.

Roderick Bloem

Nils Jansen

Radboud

University

Nijmegen

Sebastian Junges

Robert Könighofer

Chao Wang

How to guarantee Safety?

Verification inconclusive

System too complicated

... but we need to have absolute certainty

How to guarantee Safety?

Shielding - Properties

- **1. Shields guarantee correctness**
- 2. Shields are minimal interfering

Shielding - Properties

1. Shields guarantee correctness

- Correct-by-construction
- Predictive

Shielding - Properties

1. Shields guarantee correctness

- Correct-by-construction
- Predictive

1. Shields guarantee correctness

- Correct-by-construction
- Predictive

2. Shields are minimal interfering

Shield Construction – Synthesis is a Game

Shield Construction – Synthesis is a Game

Different Types of Models

N. Jansen, B. Könighofer, S. Junges, A. Serban, R. Bloem:
 Safe Reinforcement Learning Using Probabilistic Shields. CONCUR 2020

Safety Shields for Probabilistic Environments

- Example: Stay safe in the next k steps
 - For all state-actions pairs: Compute Safety-Value:
 - $P_{max}(s,a) = P_{max}(T(s,a), G^{\leq k-1}safe)$
- Absolute threshold $\gamma \in [0,1]$
 - If $P_{max}(s, a) < \gamma \rightarrow a$ is shielded in s
 - Not deadlock free!
- Relative threshold $\lambda \in [0,1]$
 - If $P_{max}(s, a) < \lambda \cdot P_{max}(s, a_{opt}) \rightarrow a$ is shielded in s

Shielding parameters:

- Large γ or $\lambda \rightarrow$ strict shield
- Small $\gamma \text{ or } \lambda \rightarrow$ permissive shield
- γ and λ can be changed on the fly

N. Jansen, B. Könighofer, S. Junges, A. Serban, R. Bloem: Safe Reinforcement Learning Using Probabilistic Shields. CONCUR 2020

Video: Safety Shielding under Uncertainty

B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, R. Bloem: Online Shielding for Stochastic Systems. **NFM 2021**

Tempest – Shielding against the Storm

Synthesis tool for shields in probabilistic environments

Extends model checker STORM

- TEMPEST is a stochastic game solver
- Uses input language from Prism Games

Difference to Prism Games

- Solves Mean-Payoff Games without restrictions on the game graph
- Provides most permissive strategies

https://tempest-synthesis.org/

Pre and Post Safety Shielding

 $\langle PostSafety, \gamma = 0.9 \rangle \langle shields \rangle P_{max=?}[G^{\leq 14}! crash]$

 $\langle PreSafety, \lambda = 0.9 \rangle \langle shields \rangle P_{max=?}[G^{\leq 14}! crash]$

S. Pranger, B. Könighofer, L. Posch, R. Bloem:

TEMPEST - Synthesis Tool for Reactive Systems and Shields in Probabilistic Environments. ATVA 2021

Future Work: Explainable Shields

Output from Tempest

Post-Safety-Shield with relative comparison (lambda = 0.95):
state_id [label]: 'forwarded actions' [<action_id> label: <forwarded_acti
0 [move=0 & x1=0 & y1=0 & x2=4 & y2=4]: 0{e}:0{e}; 1{s}:1{s}
3 [move=0 & x1=1 & y1=0 & x2=3 & y2=4]: 0{e}:2{w}; 2{w}:2{w}
4 [move=0 & x1=1 & y1=0 & x2=4 & y2=4]: 1{s}:3{n}; 3{n}:3{n}
</pre>

Shields need to be explainable

- Represent shields as decision trees
- Use tool dtControl

Pranav Ashok, Mathias Jackermeier, Jan Kretínský, Christoph Weinhuber, Maximilian Weininger, Mayank Yadav: dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning Steered by Experts. TACAS 2021

Outline

- Shielding for Safety
- Shielding for Fairness / Performance
- Analyzing Evidence of Intentional Behavior
- Testing and Policy Repair
- Model Learning

Shielding for Performance/Fairness -Joint work with

Stefan Pranger

Roderick Bloem Mar

Martin Tappler

Krishnendu Chatterjee

University of Haifa

Guy Avni

a chatterjee

Institute of Science and Technology Austria

Shields for Performance / Fairness

- Learned Controller: optimizes primary performance objective
- Other challenges than safety:
 - Optimize secondary objective / difficult to add new features
 - Robust performance, also on un-trained behavior
 - Local fairness

Shields for Performance / Fairness

Two cost functions

- *c*_{PERF}: Performance objective of shield
- *c*_{INTF}: Cost for interference

Mean-Payoff Game, 2 Objectives

Mean-Payoff Game, 1 Objective

 $\lambda \cdot c_{PERF} + (1 - \lambda) \cdot c_{INTF}$

G. Avni, R. Bloem, K. Chatterjee, T. A. Henzinger, B. Könighofer, S. Pranger: Run-Time Optimization for Learned Controllers Through Quantitative Games. CAV 2019

³⁰ Video: Traffic Control

S. Pranger, B. Könighofer, M. Tappler, M. Deixelberger, N. Jansen, R. Bloem: Adaptive Shielding under Uncertainty. ACC 2021

Outline

- Shielding for Safety
- Shielding for Fairness / Performance
- Analyzing Evidence of Intentional Behavior
- Testing and Policy Repair
- Model Learning

Analyzing Intentional Behavior

Scott Shapiro

Samuel Judson

Timos Antonopoulos

Filip Cano Cordoba

Analyzing Intentional Behavior

Given:

- Model of scenario MDP M
- Intention States S_I
- Agent policy $\pi: S \to A$
- Was the intention of the agent to reach S_I ?
- Under perfect knowledge:

If the intention of the agent is to reach S_I , then π maximizes the probability of reaching S_I .

Given:

- Model of scenario (MDP M)
- Intention (States S_I)
- Agent (policy $\pi: S \to A$)

Is there evidence of intentional behavior towards reaching S_I?

Compare π with most-optimal und least-optimal policy for achieving S_I .

- Did the agent intentionally cause the harm?
- Analyse actions picked from the agent
- Compare with most-responsible und unsafest strategy

Analyze Counterfactuals

"What if it would have been sunny?"

Analyze Counterfactuals

0

Analyzing Intentional Behvior

Outline

TU Graz

- Shielding for Safety
- Shielding for Fairness / Performance
- Analyzing Evidence of Intentional Behavior
- Testing and Policy Repair

Model Learning

Learning and Repair of Deep RL Policies

Martin Tappler

Aichernig Andrea Pferscher

Filip Can Cordoba

M. Tappler, A. Pferscher, B. Aichernig, B. Könighofer: Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. Under Submission

M. Tappler, F. Cano Córdoba, B. Aichernig, B. Könighofer: Search-Based Testing of Reinforcement Learning. IJCAI 2022

Learning and Repair of Deep RL Policies

Classical Software Development

Write code, testing/debugging, fix code, testing/debugging...

Classical Development of RL Agents

Train it, test it, start training from scratch, test it, start training from scratch...

Learning and Repair of Deep RL Policies

Wouldn't it be better to also have a cycle?

- Train
- Test
- Repair Policy
- Test
- Repair Policy....

M. Tappler, A. Pferscher, B. Aichernig, B. Könighofer: Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. Under Submission

44

Step 1: Train the agent

- Effectively train RL agent via RLfD
- Compute demonstrations automatically

Step 1: Train the agent

- Effectively train RL agent via RLfD
- Compute demonstrations automatically
- (a) Search for reference demonstration (DFS)

Step 1: Train the agent

- Effectively train RL agent via RLfD
- Compute demonstrations automatically
- (a) Search for reference demonstration (DFS)
- (b) Fuzz diverse set of demonstrations
- (c) Use demonstrations for RLfD

- Step 1: Train the agent
- Step 2: Test the agent
- Search reveals critical situations
 - DFS backtracks when reaching an unsafe state
 - Test states along reference demonstration to which the DFS backtracked

Search-Based Testing of Reinforcement Learning. IJCAI 2022

- Step 1: Train the agent
- Step 2: Test the agent
- Step 3: Repair
 - Collect examples of correct behavior near detected faulty states
 - Apply RLfD with repair experiences

Outline

- Shielding for Safety
- Shielding for Fairness / Performance
- Analyzing Evidence of Intentional Behavior
- Testing and Policy Repair
- Model Learning

Learning Environmental Models

Martin Tappler

Bernhard Aichernig

Edi Muskardin

M. Tappler, E. Muskardin, B. Aichernig, B. Könighofer: Learning Environment Models with Continuous Stochastic Dynamics. Under Submission

Learning Environmental Models

• Getting a good *model* is essential.

M. Tappler, E. Muskardin, B. Aichernig, B. Könighofer: Learning Environment Models with Continuous Stochastic Dynamics. Under Submission

Formal methods are great for learned systems

If you have a nice model

If you have a model, we can use it for

- Testing for robust performance and safety
- Monitoring / enforcement
- Explainability
- Accountability

