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Actual Causality

A theoretical concept from AT
Extends causal counterfactual reasoning

Turns out to be very usefull * ¥
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Intractable - but there are efficient approximation
algorithms and sufficient partial solutions
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Formal Verification
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Counterexamples in hardware

A huge timing diagram that is very difficult to understand
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Explaining counterexamples using causality .

(Red Dots) x
part of Z === tool * X %,
S’Q//_
A timing diagram of a buggy hardware execution
;—1 causes
marked as
. red dots

¢ = always (ISTART and\STATUS_VALID and END (->
next(ISTART Until (STATUS_VALID andREADY))

works and is really
useful!
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Reasoning about black-boxes

inputs

What can we say
about a black-box

system? I

outputs
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Intervene
on inputs

Reasoning about black-boxes x

Tnput DNN outputs
T;wac?fsiggr (causal model)
o
Q
Observe the

outputs

We can reason about various properties of
the system without opening the black box
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Explanations for Deep Neural Network's decisions

> red panda

Because

of this part: %

Explanation: minimal,
sufficient,

non-trivial subset of
the pixels of the image
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Subtle misclassification - uncovered by explanations

seems
ok
DNN for
classifying images > cowboy hat

Because
Explanation Q o© : . (-
o vered O of this part: [N

misclassification!

retrain



Reinforcement learning - causal simplification of policies

Original policy Simplified policy




AT black-box systems are widely used

Their decisions affect people <5 = o

fair?
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